841 research outputs found

    Locating High-Impedance Fault Section in Electric Power Systems Using Wavelet Transform, k

    Get PDF
    High-impedance faults (HIFs) caused by downed conductors in electric power systems are in general difficult to be detected using traditional protection relays due to small fault currents. The energized downed conductor can pose a safety risk to the public and cause a fire hazard. This paper presents a new method for locating the line (feeder) section of the HIF with the help of limited measurements in electric power systems. The discrete wavelet transform is used to extract the features of transients caused by HIFs. A modified k-means algorithm associated with genetic algorithms is then utilized to determine the placement of measurement facilities. The signal energies attained by wavelet coefficients serve as inputs to the support vector machine for locating the HIF line section. The simulation results obtained from an 18-busbar distribution system show the applicability of the proposed method

    CFD Analysis of Oil Distribution in Oil-injected Screw Compressor

    Get PDF
    Oil-injected screw compressor has been used in various industries. After decades of continuous research efforts by research teams around the world, the computer tools for rotor profile design, thermodynamic analysis, CFD/CAE calculation, and moving grid generation have been well developed and widely employed in design works. With assistance from the computer tools in performance simulation, designers could clearly understand internal phenomena of a screw compressor, as a reference for performance optimization design, and systematically carry out research works. One important issue inside an oil-injected screw compressor is about oil distribution. Different oil-injected positions and quantities cause different oil distribution inside the compressor. Therefore, the effects of oil sealing and lubrication change. Designers must understand how oil distribution is to deal with oil issues. In this study, CFD analysis was done with dynamic grid technology. Basic performance of screw compressor was calculated and compared with experiment data. Besides, three CFD models with different oil-injected paths were designed and analyzed. The influence of varying oil-injected conditions on oil distribution near contact line, sealing lines, blow holes, and end sides of inlet and outlet are shown in this study. They are used to explain how volumetric efficiency is affected. Especially for oil distribution near contact line, it not only affects volumetric efficiency, but also acts on the lubrication as rotor meshing

    Application of Computational Fluid Dynamics to the Lubrication Study of an Oil-injected Screw Compressor

    Get PDF
    Computational fluid dynamics and mesh generation tools have been well developed, and could be used to calculate the performance of an oil-injected screw compressor. Designers could now effectively obtain reliable results of efficiency, temperature, force and torque. Some physical phenomena inside a screw compressor are not easy to be observed through experiments, such as the oil distribution and the oil film thickness on the rotor surface. Under the ideal lubrication condition, the oil film of proper thickness should be maintained on the local surfaces which are going to contact with each other. This could be numerically explored by computational fluid dynamics. The first case in this study showed the effect of centrifugal force on a thin free surface flow on the rotor surface. Designers could graphically understand how the oil film flows on the rotor surface when rotors separately rotate without meshing with each other and doing the compression work. The second case in this study was the rotor lubrication. The clearance distribution between rotors in the actual contact area was designed by the minimum film thickness and was 1 μm. The pressure gradient on the rotor surface was used to see if the hydrodynamic pressure appeared. Designers could optimize the design of oil injection not only by considering efficiencies, but also by analyzing the pressure gradient and the oil film distribution on rotor surfaces

    Constructing a evaluating model for Smartphone Green Design by VAHPand QFD

    Get PDF
    Industry and high-tech industries flourish in the current era. In addition to enhancing quality of life, they have caused plentiful harm to human beings and the environment. Some man-made pollution has destroyed the ecological balance. Environmental protection has thus become everybody’s social responsibility. Many enterprises are beginning to actively concern themselves with sustainable business models and environmental protection issues. After continuous technological development in recent years, many new products have emerged to make human life more convenient. The smartphone is among the most popular of these products. The main aims of this study are to (1) analyze green smartphone requirements of consumers and designers; and (2) construct an assessment framework and checklist for smartphone green design. This study adopts voting analytic hierarchy process (VAHP) and quality function deployment (QFD) and constructs green design criteria through expert interviews

    A Comparison of Thermal Deformation of Scroll Profiles inside Oil-free Scroll Vacuum Pump and Compressor via CAE/CFD Analysis

    Get PDF
    Scroll machine is simply constructed by fixed and orbit scrolls, rotary shaft, and some mechanical components. It can impressively operate at low noise level with high reliability and high efficiency. Scroll machine achieves oil-free application through reasonable clearance control, cooling solution, and the tip seal application, and has been designed and applied as vacuum pump or compressor. In order to compactly design structure and optimize the gaps or clearances of a scroll machine, the issue of heat deformation must be considered. Deformation inside a scroll machine is not easy to be discovered, but is the necessary information for scroll profile design. In this study, the internal flow fields of oil-free scroll vacuum pump and compressor are obtained by CFD analysis. Based on the results of flow fields, this study shows the basic performance of a scroll machine, including loading on structures, gas torque, volume flow rate, and the pulsation of outlet pressure. The fluid phenomena under sub-atmospheric and positive pressure are quite different. The difference would cause different heat transfer and heat deformation. Therefore, the fluid-thermal-solid coupling analysis is also carried out. The temperature distribution of scroll structures, the thermal deformation, and gap changes are also discussed in this study

    The Non-linear Relationship between Muscle Voluntary Activation Level and Voluntary Force Measured by the Interpolated Twitch Technique

    Get PDF
    Interpolated twitch technique (ITT) is a non-invasive method for assessing the completeness of muscle activation in clinical settings. Voluntary activation level (VA), measured by ITT and estimated by a conventional linear model, was reported to have a non-linear relationship with true voluntary contraction force at higher activation levels. The relationship needs to be further clarified for the correct use by clinicians and researchers. This study was to established a modified voluntary activation (modified VA) and define a valid range by fitting a non-linear logistic growth model. Eight healthy male adults participated in this study. Each subject performed three sets of voluntary isometric ankle plantar flexions at 20, 40, 60, 80 and 100% maximal voluntary contraction (MVC) with real-time feedback on a computer screen. A supramaximal electrical stimulation was applied on tibia nerve at rest and during contractions. The estimated VA was calculated for each contraction. The relationship between the estimated VA and the actual voluntary contraction force was fitted by a logistic growth model. The result showed that according to the upper and lower limit points of the logistic curve, the valid range was between the 95.16% and 10.55% MVC. The modified VA estimated by this logistic growth model demonstrated less error than the conventional model. This study provided a transfer function for the voluntary activation level and defined the valid range which would provide useful information in clinical applications

    Effects of epinephrine on heart rate variability and cytokines in a rat sepsis model

    Get PDF
    Catecholamines have both anti-inflammatory and vasoactive properties. A decreased cardiac response to catecholamines has been associated with a high risk of death in sepsis and septic shock. The aim of this study was to investigate the effects of epinephrine (EPI) on heart rate variability and autonomic balance, as well as cytokine levels, in a rat sepsis model. Thirty-six male Sprague-Dawley rats were assigned to 4 experimental groups and 2 control groups of 6 rats each. The rats in the experimental groups were inoculated with a lipopolysaccharide (LPS, endotoxin) to establish a sepsis model. Group A received only LPS; group B received LPS, antecedent EPI and the nonselective beta-blocker propranolol; group C received LPS and antecedent EPI; and group D received LPS, antecedent EPI and the selective beta1-blocker esmolol. One control group received EPI and the other received saline placebo. Heart rate variability was analyzed and tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) levels were measured. Measurements were carried out at baseline and 0, 0.5, 2, and 4 hours after LPS inoculation. There were significant differences in heart rate variability and cytokine levels between the groups, indicating that LPS infusion caused autonomic imbalance. Antecedent EPI significantly decreased the level of TNF-α in group C compared with group A in which TNF-α level peaked at 2 hours and then declined. Propranolol (group B) but not esmolol (group D) administration resulted in elevated TNF-α levels, comparable to those observed in group A. In conclusion, antecedent administration of EPI in a rat sepsis model inhibits the production of TNF-α possibly via the β2-adrenoreceptor
    corecore